Combining Solar Panels With Agriculture Makes Land More Productive

Solar panels are wonderful things, but they do take up a lot of space, especially for larger, utility-scale systems. In some densely populated countries like China and India, where loss of farmland can lead to hungry people, floating solar farms are being built to take advantage of the surface area of lakes and rivers. Researchers at the Fraunhofer Institute For Solar Energy Systems have conducted an experiment near Lake Constance — which borders Germany, Lichtenstein, and Switzerland — regarding another solution.

solar panels and crops

According to a Fraunhofer press release, the experiment involves 720 bi-facial solar panels covering about a third of a hectare of agricultural land (on the Demeter farm cooperative Heggelbach). The panels are mounted high enough to allow the crops planted below to receive almost as much sunshine as they would if the panels were not there and to permit farm machinery to operate beneath them. After a year of trials, the research showed the dual use system increased the total productivity of the land by 60%.

© Photo Hofgemeinschaft Heggelbach

Fraunhofer refers to the dual use system as “agrophotovoltaics,” or APV. “APV has the potential to open up new space that is urgently needed for the PV expansion in Germany, says professor Hans-Martin Henning, the director of Fraunhofer ISE. “At the same time, APV can mitigate the conflicting interests between agriculture and open space PV systems for viable land. Before market readiness, however, other sectors and differently sized systems still must be tested. Also, the technical integration must be further advanced, for example, the implementation of storage.”

The first crops tested were winter wheat, potatoes, celeriac, and clover grass. “The crop yield of clover grass under the PV array was only 5.3 percent less than the reference plot,” reports professor Petera Högy, an agricultural expert at the University of Hohenheim. The yield for potatoes, wheat and celeriac were about 19 percent less.

“From the perspective of agricultural science, agrophotovoltaics is a promising solution for increasing both the land use efficiency and the share of renewable energy provided by the agricultural sector,” says professor Iris Lewandowski, who heads up the department of biobased products and energy crops at the University of Hohenheim.

The 194 kilowatt solar installation generated 1266 kilowatt-hours of electricity per installed kilowatt, one third more than the average value of 950 kilowatt-hours per kilowatt in Germany. 40% of the power produced was used to charge the batteries of the electric farm equipment and harvest crops. The team believes 70% of the energy could be utilized if a storage battery was included in the system. Any excess electricity was sold to Elektrizitätswerke Schönau, an electric utility company that uses 100% renewable energy and is a partner in the project.

“In order to provide the necessary proof-of-concept before market entry, we need to compare further techno-economical applications of APV, demonstrate the transferability to other regional areas and also realize larger systems,” says project manager Stephan Schindele. Experiments involving solar in combination with fruits, berries, hops, and grapes are planned for the future, along with various technologies such as energy storage, special films with organic solar cells, and solar PV water treatment systems.

While more research is needed, the initial results indicate that APV is a significant step forward for solar power in agricultural settings.

This article was originally published on November 24th, 2017 by   https://cleantechnica.com/

Ray Kurzweil: Here’s why solar will dominate energy within 12 years

Ray Kurzweil has made a bold prediction about the future of solar energy, saying in remarks at a recent medical technology conference that it could become the dominant force in energy production in a little over a decade. That may be tough to swallow, given that solar currently only supplies around 2% of global energy—but Kurzweil’s predictions have been overwhelmingly correct over the last two decades, so he’s worth listening to.
Kurzweil’s basic point, as reported by Solar Power World, was that while solar is still tiny, it has begun to reliably double its market share every two years—today’s 2% share is up from just 0.5% in 2012.

Many analysts extend growth linearly from that sort of pattern, concluding that we’ll see 0.5% annual growth in solar for the foreseeable future, reaching just 12% solar share in 20 years. But linear analysis ignores what Kurzweil calls the Law of Accelerating Returns—that as new technologies get smaller and cheaper, their growth becomes exponential.

But even those giants ignore Kurzweil at their own peril. He predicted the mobile Internet, cloud computing, and wearable tech nearly 20 years ago—all on the basis of the same principle of accelerating returns that’s behind his solar call.

This article was originally published

By DAVID Z. MORRIS

On April 16, 2016 on  www.fortune.com
For more of Ray Kurzweil’s predictions got to his own website http://www.kurzweilai.net/

RENEWABLE ENERGY: SMART GREENHOUSES GENERATE SOLAR POWER AND GROW CROPS AT THE SAME TIME

Tomatoes and cucumbers appear to grow just fine—and just as healthily—in smart, solar-powered greenhouses that capture solar energy for electricity.

Scientists from the University of California, Santa Cruz, have shown how crops can grow as healthily in these new greenhouses as they do in conventional greenhouses.

“We have demonstrated that ‘smart greenhouses’ can capture solar energy for electricity without reducing plant growth, which is pretty exciting,” Michael Loik, professor of environmental studies at UCSC, said in a press release. Loik is the lead author for the paper, published in the American Geophysical Union’s journal Earth’s Future. 

Solar Power Trapped by a Red Roof

Bright magenta panels cover the tops of the greenhouses, soaking up sunlight and transferring the energy to photovoltaic strips. From there, electricity is produced.

The greenhouses are able to take sunlight for energy and leave the rest, allowing plants to grow using a technology called Wavelength-Selective Photovoltaic Systems (WSPVs). The technology, developed by co-authors Sue Carter and Glenn Alers, is less expensive and more efficient than traditional photovoltaic systems.

The team tested the growth and fruit production across 20 varieties of tomatoes, cucumbers, lemons, limes, peppers, strawberries and basil at two locations at the Santa Cruz campus and one in Watsonville, California. Scientists reported that 80 percent of the plants were unaffected by the slightly darker lighting from the magenta panels, and 20 percent of the crops grew better. Tomato plants needed 5 percent less water under the magenta panels.

Reducing the energy used in greenhouses is crucial since the use of greenhouses to grow food has increased by sixfold in the past 20 years, according to Loik.

Solar-powered greenhouses are one of several developments for new ways of farming in recent years.

loik-greenhouse-320
Plants grown in the smart greenhouse were just as good as plants grown in conventional greenhouses. NICK GONZALES

Smart Greenhouse Detects Infestations

Another company, NatureSweet, has outfitted its greenhouses in Arizona with artificial intelligence, reported CNN. The plants are monitored with 10 cameras installed in the greenhouse ceilings which continuously take photographs to detect insect infestations or dying plants.

The software, developed by a company called Prospera, recognizes those problem spots and sends feedback 24/7. Previously, reported CNN, NatureSweet’s employees walked through the greenhouse in order to spot issues with the plants.

Green roofs are another method of growing food in an attempt to utilize space and close gaps in access to foods in urban areas.

In Washington, D.C., Up Top Acres has opened five urban farms on the rooftops of buildings since 2015, reported Washington City PaperGreen roofs improve storm-water collection, habitat protection and energy preservation, in addition to providing food. The company’s co-founder, Kathleen O’Keefe, told the paper that the company may not produce enough food for the city, but green roofs can change the way people think about food, in addition to utilizing unused space.

This article was originally published by BY  

 

Solar powered aquaponic greenhouses grow up to 880 lbs of produce each year

Fresh produce – ideally grown locally right in your backyard – is essential to a healthy diet, but with scores of people either lacking the space, time, or knowledge to cultivate their own food, for many that ideal simply isn’t attainable. Enter French company Myfood. They aim to bring food production back home, and they’re doing it with smart solar aquaponic greenhouses. These groundbreaking greenhouses, which are small enough to fit in a yard or even a city balcony, can produce 660 to 880 pounds of vegetables every year.

Myfood is pursuing the vision that everyone should be able to grow their own produce locally. To that end, they’ve come up with small family greenhouses powered by the sun that can function off-grid. Their Family22 greenhouse is 22 square meters, or around 237 square feet, and comes complete with solar panels and a rainwater collection system. Their model City offers a smaller option for those residing in busy metropolises – it’s just 38 square feet. Both models can be installed above ground, making them suitable for backyards or rooftops.

Related: The Sunbubble greenhouse is a mini Eden for your backyard

Inside the greenhouse, fish swimming around the base of vertical towers fertilize the vegetables growing – no synthetic fertilizers or pesticides needed. Inspired by permaculture, the team also developed raised beds that can surround the greenhouse for added food production. Ultimately, after several months, the beds become self-fertile.

Myfood, greenhouse, greenhouses, aquaponic, aquaponics, solar, solar power, solar energy, solar panels, smart greenhouse, smart greenhouses, technology, app, gardening, plants, vegetable, vegetables, cucumbers, tomatoes, fruit, local food, locally grown food, backyard, family, city

The greenhouses are intended for everyone from seasoned gardeners to people with zero gardening experience. Often one barrier that stands in the way of home food production is a lack of knowledge, so Myfood makes it easy for anyone to get started growing their own food through their smart structures designed to control the climate to guarantee success, according to Myfood. The team’s app enables families to remotely monitor the greenhouse.

Myfood, greenhouse, greenhouses, aquaponic, aquaponics, solar, solar power, solar energy, solar panels, smart greenhouse, smart greenhouses, technology, app, gardening, plants, vegetable, vegetables, cucumbers, tomatoes, fruit, local food, locally grown food, backyard, family, city

Myfood co-founder Mickaël Gandecki said, “The production of fresh and natural food, close to the consumer, offers a response to the environmental impact and lack of transparency of intensive, industrial agriculture.”

Myfood, greenhouse, greenhouses, aquaponic, aquaponics, solar, solar power, solar energy, solar panels, smart greenhouse, smart greenhouses, technology, app, gardening, plants, vegetable, vegetables, cucumbers, tomatoes, fruit, local food, locally grown food, backyard, family, city

Myfood recently unveiled what they described as the first European line of smart aquaponicgreenhouses at the Paris International Agricultural Show 2017 during February 25 through March 5.

In France and Benelux, a City model costs around $4,820 and the Family22 around $8,577. Those figures include installation, delivery, and tax. Outside the European Union costs are slightly different; not including installation, delivery or tax, the City is around $3,569 and the Family22 is around $6,432. You can find out more on their website here.

 

This article was originally published by 

 

World’s First Solar Powered Indoor Vertical Farm Comes To Philadelphia

It’s always sunny in Philadelphia, according to the title of a popular television show. If so, it’s the perfect place for the world’s first solar powered indoor vertical farm.

solar powered indoor vertical garden

Metropolis Farms has constructed a 500 kilowatt solar array made up of 2003 solar panels on the roof of a building in The City of Brotherly Love. On the fourth floor, it is constructing a vertical farm that will be powered entirely by electricity coming from the roof. It plans to grow the equivalent of 660 outdoor acres worth of crops in less than 100,000 sq feet. “The panels are already installed and turned on, now we’re building out the farm. The first crops will be planted in November,” the company says.

Before Metropolis Farms took over the space, the only things growing on the fourth floor were pigeons. But soon, crops of fresh tomatoes, strawberries, lettuce, herbs, and broccoli will flourish there for the benefit of the citizens of Philadelphia and environs. “We feel this inherently demonstrates the wonder of this new industry we’re helping create, the industry of indoor farming.”

The company goes on to say,

“To this point, the city of Philadelphia has only ~8 acres of urban farming, mainly because there’s no available land for growing crops traditionally. By bringing the growing process indoors, in line with our mission of social responsibility, we are revitalizing abandoned spaces and are using them for local food production. We are empowering a new generation of farmers to grow food for cities, in cities.

“This technology democratizes the ability to grow local food in any community, regardless of location or climate. We’re doing this because local food is just better. Local food is more nutritious than food that’s packed in a truck and travels for weeks, it tastes better, and growing food in the communities where it’s eaten helps stimulate the local economy.”

Detractors of indoor farming point out the high cost of powering all the lights and circulation pumps needed, but Metropolis Farms thinks its rooftop solar array will answer the critics.

“The truth is, like any technology, indoor farming is constantly improving upon itself. We have gained efficiencies through innovative lighting (not LEDs), BTU management systems, and other means to dramatically reduce the amount of energy our farms are using.

“And we are on the cusp of a breakthrough in a technology that will reduce our energy usage even further. We hope to demonstrate this new technological advancement at this year’s Indoor Ag-Con, hosted for the first time in Philadelphia. We are pushing the envelope by attempting to build a zero-carbon farm. Through water recapture techniques, renewable energy production, advanced energy systems, and most importantly by farming locally, we are on the right track.”

Another benefit of vertical gardening is a dramatic decrease in the amount of pesticidesneeded to grow fresh food. Not only will the crops not be covered in chemicals, neither will the environment surrounding the vertical garden. That’s a huge benefit that should not be discounted. “We hope others will follow our lead and start building farms of the future, so communities everywhere can benefit from having a quality local food source that grows crops responsibly,” say the leaders of Metropolis Farms.

Source and photo credit: Metropolis Farms

This article was originally published on October 3rd, 2017 by 

of www.cleantechnica.com