Combining Solar Panels With Agriculture Makes Land More Productive

Solar panels are wonderful things, but they do take up a lot of space, especially for larger, utility-scale systems. In some densely populated countries like China and India, where loss of farmland can lead to hungry people, floating solar farms are being built to take advantage of the surface area of lakes and rivers. Researchers at the Fraunhofer Institute For Solar Energy Systems have conducted an experiment near Lake Constance — which borders Germany, Lichtenstein, and Switzerland — regarding another solution.

solar panels and crops

According to a Fraunhofer press release, the experiment involves 720 bi-facial solar panels covering about a third of a hectare of agricultural land (on the Demeter farm cooperative Heggelbach). The panels are mounted high enough to allow the crops planted below to receive almost as much sunshine as they would if the panels were not there and to permit farm machinery to operate beneath them. After a year of trials, the research showed the dual use system increased the total productivity of the land by 60%.

© Photo Hofgemeinschaft Heggelbach

Fraunhofer refers to the dual use system as “agrophotovoltaics,” or APV. “APV has the potential to open up new space that is urgently needed for the PV expansion in Germany, says professor Hans-Martin Henning, the director of Fraunhofer ISE. “At the same time, APV can mitigate the conflicting interests between agriculture and open space PV systems for viable land. Before market readiness, however, other sectors and differently sized systems still must be tested. Also, the technical integration must be further advanced, for example, the implementation of storage.”

The first crops tested were winter wheat, potatoes, celeriac, and clover grass. “The crop yield of clover grass under the PV array was only 5.3 percent less than the reference plot,” reports professor Petera Högy, an agricultural expert at the University of Hohenheim. The yield for potatoes, wheat and celeriac were about 19 percent less.

“From the perspective of agricultural science, agrophotovoltaics is a promising solution for increasing both the land use efficiency and the share of renewable energy provided by the agricultural sector,” says professor Iris Lewandowski, who heads up the department of biobased products and energy crops at the University of Hohenheim.

The 194 kilowatt solar installation generated 1266 kilowatt-hours of electricity per installed kilowatt, one third more than the average value of 950 kilowatt-hours per kilowatt in Germany. 40% of the power produced was used to charge the batteries of the electric farm equipment and harvest crops. The team believes 70% of the energy could be utilized if a storage battery was included in the system. Any excess electricity was sold to Elektrizitätswerke Schönau, an electric utility company that uses 100% renewable energy and is a partner in the project.

“In order to provide the necessary proof-of-concept before market entry, we need to compare further techno-economical applications of APV, demonstrate the transferability to other regional areas and also realize larger systems,” says project manager Stephan Schindele. Experiments involving solar in combination with fruits, berries, hops, and grapes are planned for the future, along with various technologies such as energy storage, special films with organic solar cells, and solar PV water treatment systems.

While more research is needed, the initial results indicate that APV is a significant step forward for solar power in agricultural settings.

This article was originally published on November 24th, 2017 by   https://cleantechnica.com/

Solar powered aquaponic greenhouses grow up to 880 lbs of produce each year

Fresh produce – ideally grown locally right in your backyard – is essential to a healthy diet, but with scores of people either lacking the space, time, or knowledge to cultivate their own food, for many that ideal simply isn’t attainable. Enter French company Myfood. They aim to bring food production back home, and they’re doing it with smart solar aquaponic greenhouses. These groundbreaking greenhouses, which are small enough to fit in a yard or even a city balcony, can produce 660 to 880 pounds of vegetables every year.

Myfood is pursuing the vision that everyone should be able to grow their own produce locally. To that end, they’ve come up with small family greenhouses powered by the sun that can function off-grid. Their Family22 greenhouse is 22 square meters, or around 237 square feet, and comes complete with solar panels and a rainwater collection system. Their model City offers a smaller option for those residing in busy metropolises – it’s just 38 square feet. Both models can be installed above ground, making them suitable for backyards or rooftops.

Related: The Sunbubble greenhouse is a mini Eden for your backyard

Inside the greenhouse, fish swimming around the base of vertical towers fertilize the vegetables growing – no synthetic fertilizers or pesticides needed. Inspired by permaculture, the team also developed raised beds that can surround the greenhouse for added food production. Ultimately, after several months, the beds become self-fertile.

Myfood, greenhouse, greenhouses, aquaponic, aquaponics, solar, solar power, solar energy, solar panels, smart greenhouse, smart greenhouses, technology, app, gardening, plants, vegetable, vegetables, cucumbers, tomatoes, fruit, local food, locally grown food, backyard, family, city

The greenhouses are intended for everyone from seasoned gardeners to people with zero gardening experience. Often one barrier that stands in the way of home food production is a lack of knowledge, so Myfood makes it easy for anyone to get started growing their own food through their smart structures designed to control the climate to guarantee success, according to Myfood. The team’s app enables families to remotely monitor the greenhouse.

Myfood, greenhouse, greenhouses, aquaponic, aquaponics, solar, solar power, solar energy, solar panels, smart greenhouse, smart greenhouses, technology, app, gardening, plants, vegetable, vegetables, cucumbers, tomatoes, fruit, local food, locally grown food, backyard, family, city

Myfood co-founder Mickaël Gandecki said, “The production of fresh and natural food, close to the consumer, offers a response to the environmental impact and lack of transparency of intensive, industrial agriculture.”

Myfood, greenhouse, greenhouses, aquaponic, aquaponics, solar, solar power, solar energy, solar panels, smart greenhouse, smart greenhouses, technology, app, gardening, plants, vegetable, vegetables, cucumbers, tomatoes, fruit, local food, locally grown food, backyard, family, city

Myfood recently unveiled what they described as the first European line of smart aquaponicgreenhouses at the Paris International Agricultural Show 2017 during February 25 through March 5.

In France and Benelux, a City model costs around $4,820 and the Family22 around $8,577. Those figures include installation, delivery, and tax. Outside the European Union costs are slightly different; not including installation, delivery or tax, the City is around $3,569 and the Family22 is around $6,432. You can find out more on their website here.

 

This article was originally published by 

 

%d bloggers like this: