A model of sustainable commerce, carbon footprint, grid concerns push SoCal weed industry to be more green

A sterile windowless room glows with the light of 32 high-pressure sodium bulbs. For 12 hours a day, the light shines down upon meticulous rows of about 260 flowering cannabis plants.

This is one of the flowering rooms at Canndescent, a Desert Hot Springs cannabis business that operates several cultivation facilities. The company has the dual distinction of being the first municipally permitted cannabis cultivator in California, and the first in the industry to embrace commercial-scale solar.

Canndescent’s CEO Adrian Sedlin said the solar project, which consists of more than 700 solar modules set up on carports, offsets about 30% of the energy used at the facility. The operation allows Canndescent  to sell energy back to the utility, while also providing shade and cooling on the property itself.

Plus, many cannabis consumers desire a green product, Sedlin said.

“It was an absolute alignment of our internal values with the values of our consumers,” Sedlin said.

Cannabis cultivation generated the carbon emission equivalent of 92,660 cars in 2017. That figure is likely to increase as the legal market expands – 33 states already allow use in some form.

But the nascent industry also presents an opportunity to implement alternative energy processes and build a sustainable farming sector from the ground up.

Derek Smith, a cannabis sustainability expert with Resources Innovation Institute, said companies have yet to embrace sustainable practices on a large scale. But the seeds have been planted.

“I’ve never seen a bigger opportunity for an individual industry to make a positive leap from a highly carbon-intensive model to a low-carbon model,” Smith said. “We truly have the opportunity. We actually can show the world a model of sustainable commerce.”

How much energy does it take to grow cannabis?

The energy needs of cannabis cultivation already have presented challenges for municipalities and utilities as more states move to legalize. Oregon saw cultivation-related outages in 2015, shortly after recreational marijuana was legalized, leading officials elsewhere to ponder the need for additional substations, or how to keep their grids alight in the face of increased usage.

In the Southern California Edison service area encompassing the western side of the Coachella Valley, cannabis cultivation facilities use about 235 megawatts a day, or the equivalent of about 100,000 California homes.

System-wide, daily energy use ranges from about 10,000 to 11,000 to as much as 20,000 to 22,000 megawatts, depending on the seasons. That means the energy used by cannabis cultivation facilities could represent 1-2% of overall usage.

In Desert Hot Springs, now home to about 10 dispensaries and 23 cultivation, manufacturing or distribution projects, Mayor Scott Matas said initially there were concerns about whether the SCE grid could support the added load.

But as the facilities have gotten grows underway, some have found ways to limit usage to save energy and money — like Canndescent’s solar panels, or the implementation of LED lights, Matas said.

“If you could go to Las Vegas and see the lights that are used there, and the power that’s used there, I think they can find power to power up our industrial area here with no problem,” Matas said.

At Canndescent, the solar offset allows the company to sell energy back to SCE and recoup money on its energy bills. For its indoor grow facility, the bill could be around $30,000 a month without solar. Since the new solar project that came online in March 2019, the bill is about $12,000, Sedlin said.

Canndescent also takes advantage of an agricultural discount through SCE, which knocks 20% off of the energy costs.

Indoor vs. outdoor grows

Mike Rowe is the vice president of MSA Consulting, a Rancho Mirage civil engineering firm that’s worked with cannabis cultivation businesses on permitting, site design and other planning needs. He said indoor cannabis cultivation facilities generally use about 25 times what a standard industrial development may need.

“We’ve found that they all have their special way of growing, but there is a pretty consistent demand for the power they need,” Rowe said.

Sophisticated indoor grow facilities deploy climate control systems to keep the temperature consistent and humidity in check. The facilities often have ventilation systems and large overhead fans that frequently run to control air flow.

Perhaps most crucially, plants need extensive lighting systems to replicate the sun’s intensity. Bulbs can run for 12 to 18 hours a day, depending on what point in the life cycle the plant is at.

The benefit of the tightly controlled indoor environment is a carefully crafted product that’s been spared the wildcards of weather and pests, ultimately yielding a better output.

“When you grow outside, you can’t get as many crops as you can in a controlled environment inside,” Rowe said.

Rooms are also outfitted with automated temperature and climate controls, which helps cut down potential wasted energy and helps the plants thrive.

A few streets away, Canndescent operates a greenhouse cultivation facility which yields cannabis sold at a lower price point under the name Good Brands.

The mixed-light greenhouse facility incorporates the plentiful sunlight of Southern California, limiting the energy usage from the facility. And the dry desert climate also can work in a grower’s favor due to decreased humidity— the greenhouse also uses an evaporative cooling wall that can chill the facility by 35 degrees. It also doesn’t require the same HVAC or carbon dioxide implementation systems that are used in the indoor facility.

“It’s a much more cost-effective approach, less carbon footprint, but we can still produce beautiful cannabis at the same time,” said Tom Williamson, Canndescent’s operations manager.

While commercial-scale industrial grows run up five-figure electric bills, smaller cannabis grows can also stress power systems.

Kevin Short is the general manger of the Anza Electric Cooperative, which provides power to nearly 700 square miles in Riverside County. The mountainous high country area has long been a haven for cannabis growers, many of whom operated under the medical usage laws that preceded recreational cannabis legalization through the Proposition 64 ballot initiative in 2016.

While there aren’t commercially licensed indoor industrial-sized grows on the co-op’s grid, a Riverside County ordinance allows qualified patients to grow 12 plants, or 24 plants for two patients on the same premises.

But in the post-Prop 64 era, Short said the system has seen an increase in overloads on the transformers.

“Growers will move into an area or into a service location, not tell us how much load they’re adding onto the system, and eventually overload the transformer,” he said.

Repairs can cost the co-op precious time and money. He recommends anyone who plans to start growing in the area run the plans by the co-op so they can be sure to support the service.

Jazmyn McCammon, a board member of the High Country Growers Association who gets power from the co-op, grows 12 plants that she mostly gives away and makes solvents with.

Her operation is as natural as it gets: Plants are watered with a closed-loop system that avoids drawing well water, and she creates plant food out of fermented herbs from a garden.

She said she tries to be “a good neighbor” when it comes to power usage: that means running the lights during off-peak hours, like midday or the middle of the night.

“We go around that (peak hours) whenever we do use our lights and our power,” she said.

McCammon likes to think of the emerging cannabis industry to the beer industry: there are both large domestic brewers, and craft breweries with specialty products. And she sees California as a place where the omnipresent sun could contribute to off-grid solar-powered properties, and outdoor grows, should they be permitted.

But the area is also becoming a hotbed of enforcement: Sheriff Chad Bianco has prioritized cracking down on illegal grow operations, with deputies linking some operations to increased criminal activity and organized crime.

McCammon is concerned that Riverside County is punishing law-abiding growers by not permitting legal operations fast enough, and restricting methods of cultivating.

“The ultimate answer is outdoor growing,” she said.

Building a future on alternative energy

Smith, the sustainability expert from RII, said more data is needed to determine the most efficient set of indoor environmental conditions for a grow environment.

While some technology that could use less energy is becoming more common-place — like LED lights that could use 40% less energy than other bulbs — such improvements won’t make a difference if inappropriately used, Smith said.

“We’re seeing the opportunity of increased efficiency being left on the table, and it’s primarily because everybody needs more data to guide their decision-making,” Smith said. “This whole phenomena of growing plants in buildings is new to everyone.”

As more states move to legalize, they’re finding new ways to address energy use. In Illinois, where legalization will take effect in 2020, lawmakers this year approved a plan to set limits on how much electricity and water cannabis cultivators can use.

Canndescent’s CEO Sedlin said more cannabis facilities would be able to make sustainability-related improvements if the cannabis industry had access to traditional banking.

Even though dozens of states have legalized access to cannabis in some form, it’s still illegal to possess or sell it under federal law. That means banks who take in money associated with cannabis sales could be at legal risk.

“For us this was a priority, so we made it happen and we were able to secure private loans,” he said.

Changes could be coming soon; the Secure And Fair Enforcement Banking Act would protect banks that work with state-compliant cannabis businesses from federal penalties. It passed the Democrat-controlled House of Representatives in late September and still must go through the Republican-controlled Senate.

Sedlin said banking reforms are necessary for companies in the cannabis space who want to make big investments in alternative energy. While the solar offset is valuable for the company and, as Sedlin puts it, “the right thing to do,” private financing comes at a hefty cost that not all companies can swallow.

“I’m paying double digits (for interest rates),” Sedlin said. “It’s a joke. But again, it’s the right thing to do … Our consumers know we’re serious about being a positive force. Our company name, Canndescent, means to project light, and we’re very serious about doing that top to bottom in the company.”

This story was originally authored by Melissa Daniels at https://www.desertsun.com/ Melissa covers business and real estate in the Coachella Valley. She can be reached at (760) 567-8458 or melissa.daniels@desertsun.com. Follow Melissa on Twitter @melissamdaniels

Most States Legalizing Marijuana Have Yet to Grapple with Energy Demand

Oregon, Massachusetts and Illinois are among states taking steps to regulate energy use, according to a new report

This Monday, May 20, 2019 photo shows a mature marijuana plant beginning to bloom under artificial lights at Loving Kindness Farms in Gardena, Calif. (AP Photo/Richard Vogel)

Cannabis cultivation in the United States this year will consume 1.8 million megawatt-hours of electricity, about as much as the nation’s 15,000 Starbucks stores.

And next year it’ll be even more, according to a report from analytics firm New Frontier Data estimating just how much power it takes to produce the nation’s cannabis crop.

Yet even as they’ve welcomed it into the regulatory foldstates legalizing cannabis so far have done little to limit or even track the huge amounts of energy needed to grow it indoors. Among the 11 states to permit recreational use of cannabis, only Massachusetts and now Illinois, which did so this week, have included energy-efficiency standards for indoor cultivation, a practice that requires nearly nonstop use of lights and various heating, ventilation and air conditioning systems.

One other state, Oregon, requires simply that growers estimate and then report back on their energy use. Even this small step will help regulators there and in other states to better manage an industry whose electricity demand has long been kept as hidden as its product, says report co-author Derek Smith of Resource Innovation Institute, a nonprofit organization that promotes resource conservation in the cannabis industry.

“This is critically important, and every state should consider that,” Smith told FairWarning. “This industry has very little data historically because growers were concerned about sharing information about how they were using energy because they were hiding from the law.”

The report’s estimate of massive power demand includes only the legal stuffboth medical and recreational. Add in illicit production–some of it likely to become legal as more states authorize pot growing–and electricity use nearly triples.

Meanwhile electricity use also continues unchecked in most cannabis-legal states including California, the world’s largest cannabis market and producer of the majority of the nation’s crop. Its Bureau of Cannabis Control won’t begin asking cultivators for data on energy use until 2022, and hold them to statewide standards for renewable energy starting in 2023.

“It’s a marathon,” says Josh Drayton of the California Cannabis Industry Association, a trade group. “But the more that these issues get brought to the table, the more involvement from energy suppliers and from the industry, the more data and research that can be put out there — that’s really what’s necessary to bring change.”

Using data reported privately by 81 cultivators in nine states, the report’s authors calculated that among the three main methods of cannabis cultivation, indoor accounts for at least 60 percent of all electricity use.

Greenhouse cultivation, which requires less lighting but still involves heating, cooling and ventilation, consumes about 37 percent of the total. Outdoor farming represents the remainder, less than 3 percent.

The authors estimate it takes 18 times more power to grow a gram of cannabis indoors than outdoors. Yet for a variety of reasons including quality control, safety and security concerns, and nuisance issues related to odors and nighttime lighting, outdoor cannabis cultivation isn’t ideal everywhere, says Beau Whitney, a senior economist with New Frontier Data.

Massachusetts is one of those places, due in part to its climate and population density. But state regulators still encourage outdoor growing through discounted license fees for the express purpose of reducing energy demand, notes Sam Milton of Climate Resources Group, a Boston-based consulting firm that has partnered with Resource Innovation Institute.

For indoor growers, Massachusetts’ rules cap power use on lighting at 36 watts per square foot of plant canopy, or 50 watts per square foot for smaller operations.

In Illinois the new law signed this week by GovJ.B. Pritzker, is even stricter, applying the limit of 36 watts per square foot to all indoor farms, regardless of size.

Both states effectively prohibit the use of any lighting technology that draws more power than efficient light-emitting diodes, or LEDs, Milton says. Though more expensive than standard high-pressure sodium lamps, LEDs last longer and can reduce electricity usage by 40 percent.

The two states also have energy-reporting requirements similar to Oregon’s.

The emerging industry is already confronted with a patchwork of state-level regulations governing pesticides and other potential contaminants including metals, microbes, and solvent residues. In the case of electricity use, Milton says he believes a better alternative will be for the U.S. Department of Energy to aid the industry in developing new standards and efficiency measures.

“These facilities are so energy-intensive, and they’re proliferating, and they’re largely unregulated. I see that sector as something that really needs a lot of attention,” he says. “Without the feds coming in and providing that overarching support, it’ll have to be a state-by-state basis, which is kind of clumsy.”

This story was originally written &  produced by FairWarning (www.fairwarning.org), a nonprofit news organization based in Southern California that focuses on public health, consumer, job safety and environmental issues.

Monitoring Systems for Outdoor Hemp Cultivation

With the increasing popularity of hemp cultivation outdoors and in greenhouses, new monitoring systems are entering the market to meet the needs of hemp farmers.

Hemp farming is fast becoming a popular industry due to its wide range of therapeutic and manufacturing uses. Many systems already exist for monitoring indoor hemp cultivation facilities, such as Urban-Gro and Braingrid, bringing novel, Internet of Things solutions into the hemp space.

Now that hemp is a fully legal agricultural commodity, more farmers are choosing to grow hemp outdoors. Within the CBD oil extraction industry, hemp is often found growing in a greenhouse. Both options are rising in popularity for hemp, meaning that monitoring systems for use in these environments are necessary.

Learn the requirements for effective monitoring systems, and take a look at some of the key players within the hemp cultivation industry.

FEATURES TO LOOK FOR IN A MONITORING SYSTEM

A remote monitoring system is designed to safeguard against prolonged environmental conditions that could damage or destroy an entire crop. A remote monitoring system must be able to:

  • Track near real-time changes in ecological conditions.
  • Communicate alerts to the user independent of the Internet or an Ethernet cable (e.g., enabled via a secondary cellular network for redundancy)
  • Continue to operate in the event of a power outage (must have a battery backup system)

Depending upon the size of the operation, a monitoring system able to analyze different zones within the crop may be desired. If hemp is being grown in a greenhouse, choose a monitoring system that can also be connected to any HVAC or lighting equipment to monitor performance, and check for failures.

BENEFITS OF AUTOMATING HEMP CULTIVATION

Monitoring systems are a core component of any automation system, as data must first be collected before an equipment or environmental decision can be made. Moving toward automation of the growing environment can accomplish the following:

Reduce the cost of labor

Automating essential tasks allows for less personnel, or grants staff to devote more of their time to other areas of interest, such as R&D or marketing efforts.

Increases yield and product quality

Measuring environmental conditions within a grow operation allows the farmer to improve their methods based on analyzed data and trends. This optimization often results in improved outcomes as related to quantity. Recipes for specific types of hemp can be created, ensuring repeatability in product quality.

Eliminate guesswork

Through analyzing cultivation data, the grower can make informed operational decisions. Changes in farming practices will only be based on evidence, rather than speculation. Sugarmade AI Cultivation Monitoring System

In May of this year, Sugarmade announced a new initiative to develop a simple, AI-based technology to monitor the cultivation of outdoor hemp. Sensors will be placed at appropriate locations throughout a hemp field and will gather data such as temperature, relative humidity, and soil moisture.

This monitoring system will be based on narrowband IoT technology, which is a type of cellular communications network. Advantages of this technology include a wider coverage area than other mobile networks and long battery life.

Sugarmade has not yet made public a timeline for the development of this technology.

SENSAPHONE REMOTE MONITORING SOLUTIONS

Another cellular-based system, the Sensaphone remote monitoring devices are specifically designed for use in a greenhouse environment. Sensors are placed throughout the greenhouse, and temperature, ventilation, CO2, and relative humidity data is collected. The user can set threshold limits for each parameter and is notified via a call or text if any variable falls outside the threshold limits.

Alerts are also received in the event of a power outage or equipment failure. Data is backed up on the cloud for redundancy, and the device is equipped with an internal rechargeable battery for redundancy in the case of a power outage.

LINK4 CLOUD-BASED GREENHOUSE CONTROLS

In addition to offering an automatic dosing system to ensure consistent fertigation, Link4 has also created a class of crop monitoring systems designed for greenhouse growing. These systems control as well as monitor, and can manage up to 24 HVAC and lighting devices.

AUTOGROW PROTECTED CROPPING

A form of outdoor growing, protected cropping allows plants to grow in a fully outdoor environment but with the added benefit of minimal structures offering protection from the elements. Examples of such enclosures would be hoop houses, tunnel houses, and canopy protection.

Autogrow’s system allows the hemp farmer to monitor and control variables such as irrigation, fertigation, run-off, and root zone. The user receives an alert in the event of a problem and can manage the system remotely from their smart device.

This articles was originally written and published by Amanda Luketa of Cannabis Tech https://www.cannabistech.com/articles/monitoring-systems-for-outdoor-hemp-cultivation/

Lowering Electricity Bills Without Sacrificing Crop Yields

Electricity consumption is typically the second-biggest cost incurred by indoor cultivation facilities (and often greenhouses), behind labor. According to cultivation company data analyzed by the nonprofit Resource Innovation Institute, grow facilities on average expend about 275,000 kilowatt hours per square foot of canopy. Some grows spend much more, while outdoor grows spend little or nothing on electricity, according to Derek Smith, executive director of the Portland, Oregon-based research organization.

Screen Shot 2018-07-31 at 3.28.01 PM

The high cost of electricity for indoor growing shouldn’t come as a shock, so to speak, given a grow facility’s need for lighting, air conditioning, dehumidifying and other demands. “ The more competitive the market gets, the more people are going to have to pay attention to resource management,” said Casey Rivero, head grower at Yerba Buena in Hillsboro, Oregon. “Power is one of your biggest costs, and being able to efficiently maximize your power is key.”

While reducing your cultivation site’s electric bill without making major sacrifices on yield and quality may sound like a tall order, there are ways to do it. The two biggest consumers of electricity, according to a 2014 study performed by the Northwest Power and Conservation Council, are lighting, which accounts for about 38% of energy consumption, and dehumidification and ventilation, at 30%. Cooling takes up 21% of power demands, while the remaining 11% of power use can be attributed to heating, water management, CO2 and curing. That said, the easiest place to seek energy savings is through lighting – in addition to heating, ventilation and air conditioning, or HVAC. Here are three ways to cut your electricity bill.

1) Determine How Much Juice You’re Consuming

To save on power, you first must know how much electricity you’re consuming and what it is being used for, such as lighting and HVAC. The simplest way to measure how much you’re using is to calculate your kilowatts per day.  Next, estimate how many hours per day your lighting and HVAC equipment are running and at what power level to understand how much juice is going to each. Growers should know that the amount of lighting and HVAC being used will depend where plants are in the growth cycle. Outside conditions play a role, too, because air conditioners and dehumidifiers must work harder on hot and/or humid days, respectively.

“It’s kind of a guestimate, but it’s better than nothing,” Rivero said. To get more accurate data, Rivero suggests using power monitors that can be placed on breaker boxes to track electricity consumption based on a particular power source, such as a specific wall of air conditioning units or lighting panels. How many breaker boxes a cultivation facility has varies on the size and design of the facility as well as what kind of power service systems (single phase or three phase) and voltage power the site. Yerba Buena, for example, has individual subpanels for lighting in every room as well as a panel for each of the facility’s 10 HVAC units. There are also panels for less power intensive equipment, like water pumps. Basic power monitors cost between $600 and $1,000, while the most expensive models can hit $10,000, Rivero estimated.

Screen Shot 2018-07-31 at 3.39.19 PM

A cultivation site doesn’t need to buy a power monitor for every breaker. But having several makes it easier to run comparisons, say between different grow rooms, different days or between lighting and HVAC units within a room. In addition, energy-management companies can install data equipment to make it easier to track and manage power consumption.

Screen Shot 2018-07-31 at 3.39.29 PM

2 ) Get the Lowdown on LEDs

While lighting uses the most electricity at indoor grow sites, most cultivators still use high-pressure sodium lights, typically 1,000 watts. Not only is the wattage a major energy drain, but HPS lights produce high heat, forcing air conditioners and dehumidifiers to work harder adding to utility bills. More efficient and environmentally friendly LED lights have been around for several years, but only a small number of growers have adopted them. Many growers acknowledge that LED lights are more efficient but argue that they don’t produce the yields that HPS lights do and, therefore, reject them. For example, Massachusetts marijuana industry executives were up in arms in March after regulators imposed a cap on electricity use amounting to 36 watts per square foot of cultivation space. The move, in effect, forced growers to adopt LED lights a move some executives hope to overturn.

When Allison Justice arrived at San Diego County, California-based OutCo in late 2016, she also was told that LED lights couldn’t perform like HPS lights, and that whatever the cost savings, they would be lost to the lower yields that were expected. Justice, OutCo’s director of cultivation, wanted to see for herself, so last year she started running trials comparing 1,000- watt HPS lights with LED lights from Fluence, a commercial LED firm whose wattages were 330, 560, 660 and 1,000. More wattage equals more light intensity. Testing on two strains, Justice and her colleagues found the LED 1,000-watt lights produced 21% higher yield than 1,000-watt HPS lights, while 660-watt LEDs resulted in 13% more yield and a 37% drop in energy use. At 37% decrease, Justice noted, didn’t account for savings from the air conditioners, which ran less because LEDs give off less heat. Justice acknowledges that LEDs are more expensive – a Fluence 660 is about $1,280, while a standard HPS light is around $400 but the cost is more than outweighed by the energy savings and increased yield.

Another advantage of LED’s: They allow growers to “double stack” a layer of plants on top of another one, effectively doubling the cultivation space. How? Because HPS lights are so hot, they must be farther from the plants than LED lights, which are cooler. “It’s like getting another facility for free. The ROI on that is a no-brainer,” Justice said, referring to return on investment.

Following the successful tests, OutCo started retrofitting its facility for LED lights late last year, essentially interrupting production for six weeks to tear out old benches and lights and install new rolling benches, irrigation, drainage, HVAC and other equipment. Since then, Justice and her team have harvested two crops each of several strains, including Mendo Breath, Cookie Pucker, Grape Pie, Strawberry Banana and Black Jack. “Yield and quality is phenomenal,” Justice said. “ There’s always tweaking to do when you start something like this. Overall we’re very happy.” Other cultivators are also gaining confidence in LEDs. “I was a holdout because I never saw the production that I could get out of an HID (high-intensity discharge) with an LED. They are now rapidly catching up,” said Eli McLean, a cultivation consultant and commercial grower in Salem, Oregon. “Once you run the numbers, you realize that you get good yield of top-shelf cannabis that cost me a third less to produce.”

McLean is now researching LED lights with quantum dot technology that he said operate at about 91-92 degrees Fahrenheit. The lights are manufactured by a company called QD Grow. “ is means you’ll need far less latent cooling because you have far less latent heat,” McLean said. “I think you can see savings on your cooling costs of up to 65% for LED versus what’s being used today.”

3) Make Your HVAC Less Power Hungry

Finding ways to reduce HVAC power use is good for the environment and your company’s finances. Yerba Buena was able to get rid of its dehumidifiers, for example, which significantly reduced the company’s utility bills. How did the Oregon grower do it? It adapted sensors that measure leaf moisture and air humidity and wired them to activate air conditioners (which also perform dehumidification) when the leaf surfaces reach a certain moisture level. Remember that leaf surfaces can transpire moisture because of heat from grow lights. By activating air conditioners when leaves start to transpire – versus waiting for a preset interval Rivero can both absorb air humidity and lower temperatures that had risen because of light heat. That, in turn, reduces leaf transpiration even more.

Screen Shot 2018-07-31 at 3.52.39 PM

By reducing overall plant transpiration, and more efficiently timing air conditioning use, Yerba Buena was able to regulate and reduce humidity, so it could be handled by air conditioning alone. e company ditched its last dehumidifier in February. “Our goal is to stabilize that humidity and heat. You need to pay attention to the leaf surface, because the leaf surface temperature is what’s going to allow that water to come out of the plant,” Rivero said. “ The more sensing and control equipment you have that talks with HVAC and lighting together rather than separately, the easier it is to achieve that balance, as opposed to having those things separate and hope they line up.”

This article was originally published in Marijuana Business Magazine • July 2018

https://mjbizdaily.com