A model of sustainable commerce, carbon footprint, grid concerns push SoCal weed industry to be more green

A sterile windowless room glows with the light of 32 high-pressure sodium bulbs. For 12 hours a day, the light shines down upon meticulous rows of about 260 flowering cannabis plants.

This is one of the flowering rooms at Canndescent, a Desert Hot Springs cannabis business that operates several cultivation facilities. The company has the dual distinction of being the first municipally permitted cannabis cultivator in California, and the first in the industry to embrace commercial-scale solar.

Canndescent’s CEO Adrian Sedlin said the solar project, which consists of more than 700 solar modules set up on carports, offsets about 30% of the energy used at the facility. The operation allows Canndescent  to sell energy back to the utility, while also providing shade and cooling on the property itself.

Plus, many cannabis consumers desire a green product, Sedlin said.

“It was an absolute alignment of our internal values with the values of our consumers,” Sedlin said.

Cannabis cultivation generated the carbon emission equivalent of 92,660 cars in 2017. That figure is likely to increase as the legal market expands – 33 states already allow use in some form.

But the nascent industry also presents an opportunity to implement alternative energy processes and build a sustainable farming sector from the ground up.

Derek Smith, a cannabis sustainability expert with Resources Innovation Institute, said companies have yet to embrace sustainable practices on a large scale. But the seeds have been planted.

“I’ve never seen a bigger opportunity for an individual industry to make a positive leap from a highly carbon-intensive model to a low-carbon model,” Smith said. “We truly have the opportunity. We actually can show the world a model of sustainable commerce.”

How much energy does it take to grow cannabis?

The energy needs of cannabis cultivation already have presented challenges for municipalities and utilities as more states move to legalize. Oregon saw cultivation-related outages in 2015, shortly after recreational marijuana was legalized, leading officials elsewhere to ponder the need for additional substations, or how to keep their grids alight in the face of increased usage.

In the Southern California Edison service area encompassing the western side of the Coachella Valley, cannabis cultivation facilities use about 235 megawatts a day, or the equivalent of about 100,000 California homes.

System-wide, daily energy use ranges from about 10,000 to 11,000 to as much as 20,000 to 22,000 megawatts, depending on the seasons. That means the energy used by cannabis cultivation facilities could represent 1-2% of overall usage.

In Desert Hot Springs, now home to about 10 dispensaries and 23 cultivation, manufacturing or distribution projects, Mayor Scott Matas said initially there were concerns about whether the SCE grid could support the added load.

But as the facilities have gotten grows underway, some have found ways to limit usage to save energy and money — like Canndescent’s solar panels, or the implementation of LED lights, Matas said.

“If you could go to Las Vegas and see the lights that are used there, and the power that’s used there, I think they can find power to power up our industrial area here with no problem,” Matas said.

At Canndescent, the solar offset allows the company to sell energy back to SCE and recoup money on its energy bills. For its indoor grow facility, the bill could be around $30,000 a month without solar. Since the new solar project that came online in March 2019, the bill is about $12,000, Sedlin said.

Canndescent also takes advantage of an agricultural discount through SCE, which knocks 20% off of the energy costs.

Indoor vs. outdoor grows

Mike Rowe is the vice president of MSA Consulting, a Rancho Mirage civil engineering firm that’s worked with cannabis cultivation businesses on permitting, site design and other planning needs. He said indoor cannabis cultivation facilities generally use about 25 times what a standard industrial development may need.

“We’ve found that they all have their special way of growing, but there is a pretty consistent demand for the power they need,” Rowe said.

Sophisticated indoor grow facilities deploy climate control systems to keep the temperature consistent and humidity in check. The facilities often have ventilation systems and large overhead fans that frequently run to control air flow.

Perhaps most crucially, plants need extensive lighting systems to replicate the sun’s intensity. Bulbs can run for 12 to 18 hours a day, depending on what point in the life cycle the plant is at.

The benefit of the tightly controlled indoor environment is a carefully crafted product that’s been spared the wildcards of weather and pests, ultimately yielding a better output.

“When you grow outside, you can’t get as many crops as you can in a controlled environment inside,” Rowe said.

Rooms are also outfitted with automated temperature and climate controls, which helps cut down potential wasted energy and helps the plants thrive.

A few streets away, Canndescent operates a greenhouse cultivation facility which yields cannabis sold at a lower price point under the name Good Brands.

The mixed-light greenhouse facility incorporates the plentiful sunlight of Southern California, limiting the energy usage from the facility. And the dry desert climate also can work in a grower’s favor due to decreased humidity— the greenhouse also uses an evaporative cooling wall that can chill the facility by 35 degrees. It also doesn’t require the same HVAC or carbon dioxide implementation systems that are used in the indoor facility.

“It’s a much more cost-effective approach, less carbon footprint, but we can still produce beautiful cannabis at the same time,” said Tom Williamson, Canndescent’s operations manager.

While commercial-scale industrial grows run up five-figure electric bills, smaller cannabis grows can also stress power systems.

Kevin Short is the general manger of the Anza Electric Cooperative, which provides power to nearly 700 square miles in Riverside County. The mountainous high country area has long been a haven for cannabis growers, many of whom operated under the medical usage laws that preceded recreational cannabis legalization through the Proposition 64 ballot initiative in 2016.

While there aren’t commercially licensed indoor industrial-sized grows on the co-op’s grid, a Riverside County ordinance allows qualified patients to grow 12 plants, or 24 plants for two patients on the same premises.

But in the post-Prop 64 era, Short said the system has seen an increase in overloads on the transformers.

“Growers will move into an area or into a service location, not tell us how much load they’re adding onto the system, and eventually overload the transformer,” he said.

Repairs can cost the co-op precious time and money. He recommends anyone who plans to start growing in the area run the plans by the co-op so they can be sure to support the service.

Jazmyn McCammon, a board member of the High Country Growers Association who gets power from the co-op, grows 12 plants that she mostly gives away and makes solvents with.

Her operation is as natural as it gets: Plants are watered with a closed-loop system that avoids drawing well water, and she creates plant food out of fermented herbs from a garden.

She said she tries to be “a good neighbor” when it comes to power usage: that means running the lights during off-peak hours, like midday or the middle of the night.

“We go around that (peak hours) whenever we do use our lights and our power,” she said.

McCammon likes to think of the emerging cannabis industry to the beer industry: there are both large domestic brewers, and craft breweries with specialty products. And she sees California as a place where the omnipresent sun could contribute to off-grid solar-powered properties, and outdoor grows, should they be permitted.

But the area is also becoming a hotbed of enforcement: Sheriff Chad Bianco has prioritized cracking down on illegal grow operations, with deputies linking some operations to increased criminal activity and organized crime.

McCammon is concerned that Riverside County is punishing law-abiding growers by not permitting legal operations fast enough, and restricting methods of cultivating.

“The ultimate answer is outdoor growing,” she said.

Building a future on alternative energy

Smith, the sustainability expert from RII, said more data is needed to determine the most efficient set of indoor environmental conditions for a grow environment.

While some technology that could use less energy is becoming more common-place — like LED lights that could use 40% less energy than other bulbs — such improvements won’t make a difference if inappropriately used, Smith said.

“We’re seeing the opportunity of increased efficiency being left on the table, and it’s primarily because everybody needs more data to guide their decision-making,” Smith said. “This whole phenomena of growing plants in buildings is new to everyone.”

As more states move to legalize, they’re finding new ways to address energy use. In Illinois, where legalization will take effect in 2020, lawmakers this year approved a plan to set limits on how much electricity and water cannabis cultivators can use.

Canndescent’s CEO Sedlin said more cannabis facilities would be able to make sustainability-related improvements if the cannabis industry had access to traditional banking.

Even though dozens of states have legalized access to cannabis in some form, it’s still illegal to possess or sell it under federal law. That means banks who take in money associated with cannabis sales could be at legal risk.

“For us this was a priority, so we made it happen and we were able to secure private loans,” he said.

Changes could be coming soon; the Secure And Fair Enforcement Banking Act would protect banks that work with state-compliant cannabis businesses from federal penalties. It passed the Democrat-controlled House of Representatives in late September and still must go through the Republican-controlled Senate.

Sedlin said banking reforms are necessary for companies in the cannabis space who want to make big investments in alternative energy. While the solar offset is valuable for the company and, as Sedlin puts it, “the right thing to do,” private financing comes at a hefty cost that not all companies can swallow.

“I’m paying double digits (for interest rates),” Sedlin said. “It’s a joke. But again, it’s the right thing to do … Our consumers know we’re serious about being a positive force. Our company name, Canndescent, means to project light, and we’re very serious about doing that top to bottom in the company.”

This story was originally authored by Melissa Daniels at https://www.desertsun.com/ Melissa covers business and real estate in the Coachella Valley. She can be reached at (760) 567-8458 or melissa.daniels@desertsun.com. Follow Melissa on Twitter @melissamdaniels

Mitigating and minimizing Energy Loss In Your Greenhouse


As energy costs continue to rise, growers to need to know what their options are to help reduce energy inefficiencies to grow healthy crops and maximize their profits.

Solar power, also known as photovoltaic (PV) systems, LED lights (light-emitting diode) and infrared heaters are all some of the technologies being looked at as ways to reduce greenhouse energy costs. But the first step in any investment is to reduce any existing energy inefficiencies in your greenhouse.

Manage the temperature based on the crop and finish date. Do you grow the crop cooler for a longer period of time or warmer for a shorter period of time? It saves energy to grow at a warmer temperature for a shorter time.

Close air leaks. Seal vents, doors and fan openings with weather stripping, and cover exhaust fan openings when not in use. Fix any tears in the poly and replace any cracked or missing glass panes. Close up those leaky spots in the greenhouse. You don’t want energy savings to go out of the door or out of the poly.

Horizontal air flow fans help mix the air in the greenhouse and can help keep temperatures uniform. The fans also mix the humidity and CO2. Consistent air temperature throughout the crop will ensure the crop grows as uniformly as possible.

Install infrared (IR), anti-condensate poly film. The IR film treatment lets sunlight in but traps the radiant heat inside the greenhouse. The anti-condensate treatment reduces the surface tension on the poly allowing condensation to flow down the poly and not form droplets. You don’t have as many drops of condensation on the underside of the poly. The droplets can block sunlight, drip on plants and workers, create an environment conducive for pathogens and create safety issues such as slippery algae on the floor.

Use photoperiodic lighting on long-day plants. Long-day plants flower when the dark hours fall below their critical photoperiod. Properly timed supplemental lighting can artificially reduce the number of nighttime hours. You use photoperiodic lighting to induce flowering. The goal is to grow a quality plant as fast as you can.

Incandescent lamps alternating with compact fluorescent lamps are effective for stimulating flowering of long-day plants. LED lights can also be used to regulate flowering by photoperiodic lighting, but choose the LED lights carefully. LED lights are a major investment and there are many LED lamps available. Their light spectrum varies and sometimes causes confusion on how to use them. You need to be careful about what you’re using.

Use high-intensity light on young plants. High-intensity lights are most economical for growing young plants because you have so many plants per square foot.

Transplant larger plugs and liners. Plants in larger plug trays take less time to finish growth, but larger plugs do cost more.

Use more energy-efficient heaters. Some heat is always lost with the exhaust gases, but more energy efficient heaters lose less. The most efficient heaters for greenhouses have up to 96% thermal efficiency.

Insulate side, knee and end walls. Whenever the temperature in the greenhouse is different than the outside air, heat energy will move through the structure materials from the warm side to the cool side.

Install retractable energy curtains. The curtains shade the crop on sunny days in the spring and summer and keep heat in the greenhouse at night during the winter. Installing energy curtains isn’t going to be profitable in every situation. If you start growing in March, you’re probably not going to need one. If you’re growing in the winter to get plants to market in March, they are very cost effective.

Install more energy efficient lamps. LED lamps continue to improve and lamps with a photosynthetic photon efficacy (μmol×J–1) of greater than two are available. Make sure to ask about that efficacy number prior to purchasing lamps.

Install in-floor heat to increase substrate temperature and to decrease air temperature. You can lower your air temperature and increase your substrate temperature if you have root zone heating.

Use environmental control systems. They’re more responsive and growers don’t have to manually alter the environment several times a day.

For growers who want to consider solar, consider getting an energy audit to assess your system. That’s where you want to start.

Most public utilities and electric cooperatives offer free energy audits, but they are not the type 2 audits. The American Society of Heating, Refrigeration and Air-Conditioning Engineers defines three levels of energy audits types 1, 2 and 3 with the larger numbers having greater detail and accuracy.

Type 2 audits are required to participate in the Natural Resources Conservation Service (NRCS) Environmental Quality Incentives Program (EQIP) and the USDA Rural Development’s Rural Energy for America Program (REAP).

EQIP provides funding up to 75% of the cost of eligible projects that increase energy efficiency. REAP provides grants up to 25% of the total eligible project cost and loan guarantees for up to 75% of the total eligible project cost to purchase or install renewable energy systems or make energy efficiency improvements. Now is a good time to get into a renewable energy and we would like to partner with you to evaluate your operation for energy efficiency & renewable energy.